
Stateflow®

For Use with Simulink®

Modeling

Simulation

Implementation

Getting Started
Version 6

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Getting Started with Stateflow

© COPYRIGHT 2004–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
June 2004 First printing New for Version 6.0 (Release 14)
October 2004 Online only Revised for Version 6.1 (Release 14SP1)
March 2005 Online only Revised for Version 6.2 (Release 14SP2)
September 2005 Online only Revised for Version 6.3 (Release 14SP3)
October 2005 Reprint Version 6.0
March 2006 Second printing Revised for Version 6.4 (Release R2006a)
September 2006 Reprint Version 6.5 (Release R2006b)

Contents

Introduction to Stateflow

1
What Is Stateflow? . 1-2

Extends the Capabilities of Traditional State Charts 1-2
Generates C Code . 1-3

What Does a Stateflow Chart Look Like? 1-4

How Stateflow Works with Simulink 1-6

Basic Workflow for Building a Stateflow Chart 1-8

Installing Stateflow . 1-9
Obtaining a Stateflow License . 1-9
Prerequisite Software . 1-9
Product Dependencies . 1-10
Setting Up Your Own Target Compiler 1-10
Using Stateflow on a Laptop Computer 1-10

Related Products . 1-11

The Stateflow Chart You Will Build

2
The Stateflow Chart . 2-2

How the Stateflow Chart Works with the Simulink
Model . 2-6

A Look at the Physical Plant . 2-8

v

Running the Model . 2-11

Defining the Interface to Simulink

3
Design Considerations for Defining the Interface 3-2

Inputs Required from Simulink . 3-2
Outputs Required from Stateflow . 3-3

Implementing the Interface . 3-4
Adding a Stateflow Block to a Simulink Model 3-4
Defining the Inputs and Outputs . 3-10
Connecting the Stateflow Block to the Simulink

Subsystem . 3-18

Defining the States for Modeling Each Mode of
Operation

4
Design Considerations for Defining the States 4-2

When to Use States . 4-2
Determining the States to Define . 4-3
Determining the Hierarchy of States 4-5
Determining the Decomposition of States 4-6

Implementing the States . 4-7
Adding the Power On and Power Off States 4-7
Adding and Configuring Parallel States 4-10
Adding the On and Off States for the Fans 4-16

vi Contents

Defining State Actions and Variables

5
Design Considerations for Defining State Actions and

Variables . 5-2
Defining State Variables . 5-2
Determining Whether to Use State Actions 5-2
Determining the Type of State Action to Use 5-4

Implementing State Actions . 5-5
Writing an Entry Action . 5-5
Writing a During Action . 5-6

Defining Transitions Between States

6
Design Considerations for Defining Transitions

Between States . 6-2
Determining How and When to Transition Between

Operating Modes . 6-2
Placing Default Transitions . 6-3
Guarding the Transitions . 6-3

Adding the Transitions . 6-5
Drawing the Transitions Between States 6-5
Adding Default Transitions . 6-8
Adding Conditions to Guard Transitions 6-11
Adding Events to Guard Transitions 6-13

Triggering a Stateflow Chart

7
Design Considerations for Triggering Stateflow

Charts . 7-2

vii

Implementing the Triggers . 7-3
Defining the CLOCK Event . 7-3
Connecting the Edge-Triggered Events to the Input

Signals . 7-4

Simulating the Chart

8
Preparing Charts for Simulation . 8-3

Setting Simulation Parameters . 8-4

Animating Stateflow Charts . 8-6

Setting Breakpoints . 8-9

Simulating the Air Controller Chart 8-11

Debugging the Chart

9
Debugging State Inconsistencies . 9-2

Debugging Data Range Violations 9-6

Index

viii Contents

1

Introduction to Stateflow

This chapter describes Stateflow® and its components.

What Is Stateflow? (p. 1-2) Presents an overview of Stateflow
features

What Does a Stateflow Chart Look
Like? (p. 1-4)

Presents an example of a Stateflow
chart

How Stateflow Works with Simulink
(p. 1-6)

Describes how Stateflow works with
Simulink®

Basic Workflow for Building a
Stateflow Chart (p. 1-8)

Explains each phase of a basic
workflow for building a Stateflow
chart

Installing Stateflow (p. 1-9) Provides information about
installing Stateflow and prerequisite
products.

Related Products (p. 1-11) Provides information about products
that extend the capabilities of
Stateflow

1 Introduction to Stateflow

What Is Stateflow?
Stateflow is an interactive graphical design tool that works with Simulink
to model and simulate event-driven systems, also called reactive systems.
Event-driven systems transition from one operating mode to another in
response to events and conditions. These systems are often used to model
logic for dynamically controlling a physical device such as a fan, motor, or
pump. Event-driven systems can be modeled as finite-state machines.

Finite-state machines represent operating modes as states. For example, a
house fan can have states such as High, Medium, Low, and Off. To construct
finite-state machines, Stateflow provides graphical objects that you can drag
and drop from a design palette to create state-transition charts in which a
series of transitions directs a flow of logic from one state to another. Stateflow
also allows you to add

• Input and output data.

• Events for triggering Stateflow charts

• Actions and conditions, which you can attach to states and transitions to
further define the behavior of the Stateflow chart.

You will learn more about these elements later in this guide.

Extends the Capabilities of Traditional State Charts
Stateflow allows you to extend the capabilities of traditional state charts by

• Adding hierarchy to charts

• Modeling parallel states

• Defining functions graphically, using flow diagrams; procedurally, using
the MATLAB® language; and in tabular form, with truth tables

• Using temporal logic to schedule events

• Defining vector, matrix, and fixed-point data types

1-2

What Is Stateflow?

Generates C Code

Stateflow performs simulation by generating a C code implementation of the
Stateflow chart. The simulation code is generated from a simulation target.
You will learn more about simulation targets later in Chapter 8, “Simulating
the Chart”.

You can also generate portable C code from Stateflow charts automatically
using Stateflow® Coder (available separately). Stateflow Coder also works
with Real-Time Workshop® (available separately) to generate C code for
Simulink models that include Stateflow charts.

1-3

1 Introduction to Stateflow

What Does a Stateflow Chart Look Like?
Here is an example of a Stateflow chart, which models as a finite-state
machine the logic required to shift gears in an automatic transmission system
of a car:

�����

�����	�
����

��������

����������

��������	�����	�����

��
������	����	�����

Notice the following details in this Stateflow chart:

• Each gear and shift position is represented by a state.

• Some states are exclusive (only one can be active at a time) while others
are parallel (can be active concurrently).

• Transitions can be triggered by events and conditions.

• States can execute actions while they are active.

You will learn more about these features later in this guide as you build your
own Stateflow chart.

1-4

What Does a Stateflow Chart Look Like?

This chart is part of a model called sf_car that ships with Stateflow. To
explore the model further, run it from your MATLAB Command Window, as
described in “Running a Demo Model” in the online documentation Getting
Started with Simulink.

1-5

1 Introduction to Stateflow

How Stateflow Works with Simulink
Stateflow charts run as blocks in a Simulink model. The Stateflow block
connects to other blocks in the model by input and output signals. Through
these connections, Stateflow and Simulink share data and respond to events
that are broadcast between model and chart. For example, the Stateflow
shift_logic block is integrated with the Simulink sf_car model as shown:

1-6

How Stateflow Works with Simulink

You can develop your Stateflow chart before or after the Simulink model in
which it will run. Stateflow comes with its own editor and debugger, which
allows you to simulate and test the chart logic before you integrate it with a
Simulink model. You can test a Stateflow chart independently of its parent
model by attaching a Simulink Source block as an input and a Simulink
Sink block as an output (see “Sources” and “Sinks” in the online Stateflow
Reference documentation). During simulation, you can animate the chart to
get visual feedback about its run-time behavior. You will edit, simulate, and
debug your chart later in this guide.

1-7

1 Introduction to Stateflow

Basic Workflow for Building a Stateflow Chart
Here is a basic workflow for building Stateflow charts that accurately model
event-driven systems:

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

#
������	���
�������
�
��	�� ����$

%
������

�����	�
�����
���	�����&���

'
������	���
�����������

&��(���	������

)
��
���	��(��
���!!��	���	
����

*
��&�!
���	
����

+
�� �����
���	
����

To get started quickly, you will participate in hands-on exercises that guide
you through each phase of this workflow for building a realistic Stateflow
chart and integrating it with a Simulink model. Note that work flows in one
direction until you get to phase 6. At this phase, you may need to iterate
between simulating and debugging your Stateflow chart as you fix errors and
experiment with different parameters until the model produces the desired
behavior.

1-8

Installing Stateflow

Installing Stateflow
Stateflow runs on Windows and UNIX operating systems. Your
platform-specific MATLAB installation documentation provides all the
information you need to install Stateflow. Before installing Stateflow, make
sure you address the following configuration requirements:

• “Obtaining a Stateflow License” on page 1-9

• “Prerequisite Software” on page 1-9

• “Product Dependencies” on page 1-10

• “Setting Up Your Own Target Compiler” on page 1-10

• “Using Stateflow on a Laptop Computer” on page 1-10

Obtaining a Stateflow License

To install Stateflow, you must obtain a License File or Personal License
Password from The MathWorks. These documents identify the products
you are permitted to install and use. For information about the license
manager, contact The MathWorks Technical Support by using this form:
www.mathworks.com/contact_TS.html.

Prerequisite Software
Before installing Stateflow, you need the following software:

• MATLAB

• Simulink

• Stateflow Coder

• C or C++ compiler supported by MATLAB

The compiler is required for compiling code generated by Stateflow for
simulation. The Microsoft Windows version of Stateflow comes with a C
compiler (lcc.exe) and a make utility (lccmake). Both tools are installed
in the directory matlabroot\sys\lcc. If you do not configure MATLAB to
use any other compiler, Stateflow uses lcc to build targets.

1-9

http://www.mathworks.com/support

1 Introduction to Stateflow

For platforms other than Windows or to install a different compiler, see
“Setting Up Your Own Target Compiler” on page 1-10.

Product Dependencies

For information about product dependencies and requirements, see
www.mathworks.com/products/stateflow/requirements.html.

Setting Up Your Own Target Compiler
If you use the UNIX version of Stateflow or do not wish to use the lcc
compiler, you must install your own target compiler. You can use any compiler
supported by MATLAB, as described in “Building MEX-Files” in the online
MATLAB External Interfaces documentation.

To install a compiler for Stateflow, follow these steps:

1 At the MATLAB prompt, type

mex -setup

2 Follow the prompts for entering information about the compiler.

Using Stateflow on a Laptop Computer
If you plan to run the Microsoft Windows version of Stateflow on a laptop
computer, you should configure the Windows color palette to use more than
256 colors. Otherwise, you may experience unacceptably slow performance.

To set the Windows graphics palette:

1 Click the right mouse button on the Windows desktop to display the
desktop menu.

2 Select Properties from the desktop menu to display the Windows Display
Properties dialog box.

3 Select the Settings panel on the Display Properties dialog box.

4 Choose a setting that is more than 256 colors and click OK.

1-10

http://www.mathworks.com/products/stateflow/requirements.html

Related Products

Related Products
The MathWorks provides several products that extend the capabilities
of Stateflow. For information about these related products, see
www.mathworks.com/products/stateflow/related.htm.

1-11

http://www.mathworks.com/products/stateflow/related.html

1 Introduction to Stateflow

1-12

2

The Stateflow Chart You
Will Build

To get hands-on experience using Stateflow, you will build a Stateflow chart in
incremental steps that follow the basic workflow described in “Basic Workflow
for Building a Stateflow Chart” on page 1-8. To give you a context for your
development efforts, this chapter describes the purpose and function of the
chart you will build and explains how it interfaces with a Simulink model.
You will also learn how to run a completed version of the model from the
MATLAB command line.

The Stateflow Chart (p. 2-2) Shows the Stateflow chart you will
learn how to build; demonstrates
how the Stateflow control block
works with the Simulink model.

How the Stateflow Chart Works with
the Simulink Model (p. 2-6)

Describes the interface between the
Stateflow chart and the Simulink
model

A Look at the Physical Plant (p. 2-8) Describes how Simulink models the
physical plant that is controlled by
the Stateflow chart

Running the Model (p. 2-11) Shows how to run the
sf_aircontrol model to explore its
behavior

2 The Stateflow Chart You Will Build

The Stateflow Chart
You will build a Stateflow chart that maintains air temperature at 120 degrees
in a physical plant. The Stateflow controller operates two fans. The first fan
turns on if the air temperature rises above 120 degrees and the second fan
provides additional cooling if the air temperature rises above 150 degrees.
When completed, your Stateflow chart should look something like this:

2-2

The Stateflow Chart

As you can see from the title bar, the Stateflow chart is called Air Controller
and is part of a Simulink model called sf_aircontrol. When you build
this chart, you will learn how to work with the following elements of
state-transition charts:

Exclusive (OR) state. State that represents mutually exclusive modes of
operation. No two exclusive (OR) states can ever be active or execute at the
same time. Exclusive (OR) states are represented graphically by a solid
rectangle:

The Air Controller chart contains six exclusive (OR) states:

• PowerOn

• PowerOff

• FAN1.On

• FAN1.Off

• FAN2.On

• FAN2.Off

Parallel (AND) state. State that represents independent modes of operation.
Two or more parallel (AND) states at the same hierarchical level can be active
concurrently, although they execute in a serial fashion. Parallel (AND) states
are represented graphically by a dashed rectangle with a number indicating
execution order:

The Air Controller chart contains three parallel (AND) states:

• FAN1

2-3

2 The Stateflow Chart You Will Build

• FAN2

• SpeedValue

Transition. Graphical object that links one state to another and specifies a
direction of flow. Transitions are represented by unidirectional arrows:

The Air Controller chart contains six transitions, from

• PowerOn to PowerOff

• PowerOff to PowerOn

• FAN1.On to FAN1.Off

• FAN1.Off to FAN1.On

• FAN2.On to FAN2.Off

• FAN2.Off to FAN2.On

Default transition. Graphical object that specifies which exclusive (OR)
state is to be active when there is ambiguity between two or more exclusive
(OR) states at the same level in the hierarchy. Default transitions are
represented by arrows with a closed tail:

The Air Controller chart contains default transitions:

• At the chart level, the default transition indicates that the state PowerOff
is activated (wakes up) first when the chart is activated.

• In the FAN1 and FAN2 states, the default transitions specify that the fans be
powered off when the states are activated.

State action. Action executed based on the status of a state.

2-4

The Stateflow Chart

The Air Controller chart contains two types of state actions:

• entry (en) action in the PowerOff state. Entry actions are executed when
the state is entered (becomes active).

• during (du) action in the SpeedValue state. During actions are executed for
a state while it is active and no valid transition to another state is available.

Note There are other types of state actions besides entry and during,
but they involve concepts that go beyond the scope of this guide. For more
information, see “Using Actions in Stateflow” in the online Stateflow User’s
Guide documentation.

Condition. Boolean expression that allows a transition to occur when the
expression is true. Conditions appear as labels for the transition, enclosed in
square brackets ([]).

The Air Controller chart provides conditions on the transitions between
FAN1.On and FAN1.Off, and between FAN2.On and FAN2.Off, based on the air
temperature of the physical plant at each time step.

Event. Object that can trigger a variety of activities, including

• Waking up a Stateflow chart

• Causing transitions to occur from one state to another (optionally in
conjunction with a condition)

• Executing actions

The Air Controller chart contains two edge-triggered events:

• CLOCK wakes up the Stateflow chart at each rising or falling edge of a
square wave signal.

• SWITCH allows transitions to occur between PowerOff and PowerOn at each
rising or falling edge of a pulse signal.

2-5

2 The Stateflow Chart You Will Build

How the Stateflow Chart Works with the Simulink Model
The Stateflow chart you will build appears as a block named Air Controller
that is connected to the model of a physical plant in the Simulink
sf_aircontrol model. Here is the top-level view of the model:

��������(
���� �� ����$	��&�,���

As you can see, Simulink passes the temperature of the plant as an input
temp to the Stateflow Air Controller block. Based on the temperature of the
plant, the controller activates zero, one, or two fans, and passes back to
Simulink an output value airflow that indicates how fast the air is flowing.
The speed of the airflow depends on the amount of cooling activity generated
by the fans. As cooling activity increases, air flows faster. Simulink uses the
value of airflow to simulate the effect of cooling when it computes the air
temperature in the plant over time. You will learn more about these design
elements in Chapter 3, “Defining the Interface to Simulink”.

2-6

How the Stateflow Chart Works with the Simulink Model

The Signal Builder block in the Simulink model sends a square wave signal
(CLOCK) to wake up the Stateflow chart at regular intervals and a pulse signal
(SWITCH) to cycle the power on and off for the control system modeled by the
Stateflow chart. You will learn more about these design elements in Chapter
7, “Triggering a Stateflow Chart”.

2-7

2 The Stateflow Chart You Will Build

A Look at the Physical Plant
Simulink models the plant using a subsystem called Physical Plant, which
contains its own group of Simulink blocks. The subsystem provides a
graphical hierarchy for the blocks that define the behavior of the Simulink
model. The inputs, airflow speed and ambient temperature, are used to model
the effects of the controller activity on plant temperature. Here is a look
inside the Physical Plant subsystem:

In this model, the internal temperature of the plant attempts to rise to achieve
steady state with the ambient air temperature, set at a constant 160 degrees
(as shown in “How the Stateflow Chart Works with the Simulink Model” on
page 2-6). The rate at which the internal temperature rises depends in part on
the degree of thermal isolation in the plant and the amount of cooling activity.

Thermal isolation measures how much heat flows into a closed structure,
based on whether the structure is constructed of materials with insulation or

2-8

A Look at the Physical Plant

conduction properties. Here, thermal isolation is represented by a Gain block,
labeled Thermal Isolation. The Gain block provides a constant multiplier
that is used in calculating the temperature in the plant over time.

Cooling activity is modeled using a constant multiplier, derived from the
value of airflow, an output from the Stateflow chart. Stateflow assigns
airflow one of three cooling factors, each a value that serves as an index into
a multiport switch. Using this index, the multiport switch selects a cooling
activity multiplier that is directly proportional to the cooling factor, as follows:

Cooling Factor
(Value of Airflow)

What It Means Cooling
Activity

0 No fans are running. The value of
temp is not lowered.

0

1 One fan is running. The value
of temp is lowered by the cooling
activity multiplier.

-0.05

2 Two fans are running. The value
of temp is lowered by the cooling
activity multiplier.

-0.1

Over time, the subsystem calculates the cooling effect inside the plant, taking
into account thermal isolation and cooling activity. The cooling effect is the
time-derivative of the temperature and is the input to the Integrator block in
the Physical Plant subsystem. Let the variable temp_change represent the
time derivative of temperature. Note that temp_change can be a warming or
cooling effect, depending on whether it is positive or negative, based on this
equation:

temp_change = ambient temp(())− ∗ (thermal isolation multiplier)) (()))+ − ∗ (ambient temp cooling factor

2-9

2 The Stateflow Chart You Will Build

The Integrator block computes its output temp from the input temp_change,
as follows:

temp t temp change t dt() _ ()= + 70
t

t

0

∫

Note In this model, the initial condition of the Integrator block is 70 degrees.

temp is passed back to the Stateflow Air Controller to determine how much
cooling is required to maintain the ideal plant temperature.

2-10

Running the Model

Running the Model
To see how the sf_aircontrol model works, you can run a completed, tested
version, which includes the Stateflow chart you will build. Here’s how to do it:

1 Start MATLAB.

If you need instructions, consult your MATLAB documentation.

2 Type sf_aircontrol at the command line.

This command starts Simulink and opens the sf_aircontrol model:

3 Double-click the Air Controller block to open the Stateflow chart.

4 Double-click the Scope block to display the changes in temperature over
time as the model runs.

2-11

2 The Stateflow Chart You Will Build

Tip Position the Air Controller chart and the Scope window so they are
both visible on your desktop.

5 Start simulation in the Air Controller chart by selecting Start from the
Simulation menu or clicking the Start Simulation icon:

As the simulation runs, the chart becomes active (wakes up) in the
PowerOff state. Notice in the Scope that until PowerOn becomes active, the
temperature rises unchecked. After approximately 350 seconds into the
simulation, a rising edge signal switches power on and the fans become
active.

Note Simulation time can be faster than elapsed time.

When the temperature rises above 120 degrees, FAN1 cycles on. When the
temperature exceeds 150 degrees, FAN2 cycles on to provide additional
cooling. Ultimately, FAN1 succeeds in maintaining the temperature at 120
degrees until a falling edge signal switches power off again at 500 seconds.
Then, the temperature begins to rise again.

2-12

Running the Model

The Scope captures the temperature fluctuations:

2-13

2 The Stateflow Chart You Will Build

Tip You can stop or pause simulation at any time. To stop simulation,
select Stop from the Simulation menu or click the Stop Simulation icon:

To pause simulation, select Pause from the Simulation menu or click
the Pause Simulation icon:

6 Close the model.

Where to go next. Now you are ready to start building the Stateflow Air
Controller chart. Begin at phase 1 of the workflow: Chapter 3, “Defining
the Interface to Simulink”.

2-14

3

Defining the Interface to
Simulink

)
��
���	��(��
���!!��	���	
����

'
������	���
�����������

&��(���	������

+
�� �����
���	
����

*
��&�!
���	
����

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

#
������	���
�������
�
��	�� ����$

%
������

�����	�
�����
���	�����&���

You have entered phase 1 of a basic workflow for building a Stateflow chart:
define the interface to Simulink. This chapter presents the design questions
that you must answer and guides you through exercises for implementing the
interface, based on your design decisions.

Design Considerations for Defining
the Interface (p. 3-2)

Poses the design questions for phase
1 of the workflow and presents the
rationale for the solutions

Implementing the Interface (p. 3-4) Provides hands-on exercises that
show you how to implement the
interface as designed

3 Defining the Interface to Simulink

Design Considerations for Defining the Interface
You should consider the following design questions when defining the
interface between your Stateflow chart and a Simulink model:

• What inputs does the Stateflow chart require from Simulink?

• What outputs does Simulink require from the Stateflow chart?

Inputs Required from Simulink

Type of Input. Temperature of the physical plant

Rationale. The Stateflow chart is designed to control the air temperature in
a physical plant. The goal is to maintain an ideal temperature of 120 degrees
by activating one or two cooling fans if necessary. Stateflow must check the
plant temperature over time to determine the amount of cooling required.

Properties of Input. The properties of the temperature input are as follows:

Property Value

Name temp

Scope Input from Simulink

Size Inherit from Simulink input signal to ensure
compatibility

Data type Inherit from Simulink input signal to ensure
compatibility

Port 1

Watch in debugger Enable

3-2

Design Considerations for Defining the Interface

Outputs Required from Stateflow

Type of Output. Speed of airflow, based on how many fans are operating.

Rationale. When the Simulink subsystem determines the temperature of
the physical plant over time, it needs to account for the speed of the airflow.
Airflow speed is directly related to the amount of cooling activity generated by
the fans. As more fans are activated, cooling activity increases and air flows
faster. To convey this information, the Stateflow chart outputs a value that
indicates whether 0, 1, or 2 fans are running. The Simulink subsystem uses
this value as an index into a multiport switch, which outputs a cooling activity
value, as described in “A Look at the Physical Plant” on page 2-8.

Properties of Output. The properties of the airflow output are as follows:

Property Value

Name airflow

Scope Output from Simulink

Data type 8-bit unsigned integer

(The values can be only 0, 1, or 2.)

Port 1

Watch in debugger Enable

3-3

3 Defining the Interface to Simulink

Implementing the Interface
To implement the interface as designed, you need to perform the following
tasks:

• “Adding a Stateflow Block to a Simulink Model” on page 3-4

• “Defining the Inputs and Outputs” on page 3-10

• “Connecting the Stateflow Block to the Simulink Subsystem” on page 3-18

Adding a Stateflow Block to a Simulink Model
To begin building your Stateflow chart, you will add a Stateflow block to
a partially built Simulink model called sf_aircontrol_exercise, which
contains the Physical Plant subsystem, described in “A Look at the Physical
Plant” on page 2-8.

To add a Stateflow block to an existing Simulink model:

1 Open the Simulink model by typing sf_aircontrol_exercise at the
MATLAB command prompt.

The model opens on your desktop:

3-4

Implementing the Interface

The model is incomplete because it doesn’t include the Stateflow chart that
you will build as you work through the exercises in this guide. Instead,
the model contains several nonfunctional blocks: the Terminator, Inport,
and Annotation blocks, as shown:

������
������	&��
$�

2 Delete the nonfunctional blocks and their connectors.

Tip Hold down the Shift key to select multiple objects, and then press
Delete.

3-5

3 Defining the Interface to Simulink

Your model should now look like this:

3 Save the model as Stage1Interface as follows:

a Create a new directory for storing your working model.

b In the Simulink model window, select Save As from the File menu.

c Navigate to the new directory.

d Enter Stage1Interface.mdl as the file name.

e Leave the default type as Simulink Models (*.mdl).

f Click Save.

4 From the toolbar of the Simulink model, select the Library Browser icon:

3-6

Implementing the Interface

In Windows, the Simulink Library Browser opens on your desktop:

In UNIX, the Simulink library window appears:

3-7

3 Defining the Interface to Simulink

5 Add the Stateflow block to the Simulink model by following these steps:

Operating
System

Instructions

Windows Follow these steps:
1 In the left scroll pane of the Library Browser, select

Stateflow.
2 Drag the first block, called Chart, into your

Simulink model.

UNIX Follow these steps:
1 In the Simulink library window, double-click

Blocksets & Toolboxes.
2 In the bottom row of the Blocksets & Toolboxes

window, double-click Stateflow.

The Stateflow library window sflib opens on your
desktop.

3 In the sflib window, drag the first block, called
Chart, into your Simulink model.

3-8

Implementing the Interface

The Simulink model should now look like this:

6 Click the label Chart under the Stateflow block and rename it Air
Controller.

3-9

3 Defining the Interface to Simulink

Tip There is a shortcut for adding a Stateflow block to a new Simulink model.
At the MATLAB command prompt, enter this command:

sfnew

A new, untitled Simulink model opens on your desktop, automatically
configured with a Stateflow block:

Defining the Inputs and Outputs
Inputs and outputs are data elements in a Stateflow chart that interact with
the parent Simulink model. To define inputs and outputs for your Stateflow
chart, follow these steps:

1 Double-click the Air Controller block in the Simulink model
Stage1Interface to open the Stateflow chart.

3-10

Implementing the Interface

The Stateflow Editor opens on your desktop:

2 Add a data element to hold the value of the temperature input from
Simulink by following these steps:

a Select Data > Input from Simulink from the Add menu.

3-11

3 Defining the Interface to Simulink

The Data properties dialog box opens on your desktop with the General
tab selected:

The default values that appear are based on the scope — in this case, a
data input.

b In the Name field, change the name of the data element to temp.

3-12

Implementing the Interface

c Leave the other fields at their default values in the General tab because
they meet the design requirements, as follows:

Field Default Value What It Means

Scope Input Input from Simulink. The data
element gets its value from the
Simulink signal on the same
input port.

Size -1 The data element inherits its size
from the Simulink signal on the
same port.

Data type mode Inherited The data element inherits its data
type from the Simulink signal on
the same output port.

Note Ports are assigned to inputs and outputs in the order they are
created. Because temp is the first input you created, it is assigned to
input port 1.

d Select the Value Attributes tab and select the Watch in debugger
check box.

Enabling Watch in debugger allows you to examine the value of temp
during breakpoints in simulation. You will try this later in Chapter
8, “Simulating the Chart”.

e Click OK to apply the changes and close the dialog box.

3 Add a data element to hold the value of the airflow output from the Air
Controller chart by following these steps:

a Select Data > Output to Simulink from the Add menu.

3-13

3 Defining the Interface to Simulink

The Data properties dialog box opens on your desktop, this time with
different default values, associated with the scope Output:

b In the Name field of the Data properties dialog box, change the name of
the data element to airflow.

c In the Data type field, select uint8 (8-bit unsigned integer) from the
submenu.

d Leave the other fields at their default values in the General tab pane
because they meet the design requirements, as follows:

Field Default Value What It Means

Scope Output Output to Simulink.

Data type mode Built-in You can select uint8 from a menu
in the Data type field. The menu
lists all data types supported by
Stateflow.

3-14

Implementing the Interface

Note Because airflow is the first output you created, it is assigned
to output port 1.

e Click the Value Attributes tab and look at the Initial value field.

The initial value is a blank expression, which indicates a default value
of zero, based on the data type. This value is consistent with the model
design, which specifies that no fans are running when the Stateflow
chart wakes up for the first time.

f Make the following changes in the Value Attributes tab:

Property What to Specify

Limit range Enter 0 for Minimum and 2 for Maximum.

Watch in
debugger

Select the check box to enable this option.

g Click OK to apply the changes and close the dialog.

3-15

3 Defining the Interface to Simulink

4 Look back at the Simulink model by clicking the up-arrow in the Stateflow
Editor toolbar:

3-16

Implementing the Interface

Notice that the input temp and output airflow have been added to the
Stateflow block:

Tip You may need to enlarge the Air Controller block to see the input and
output clearly. To change the size of the block:

a Select the block and move your cursor over one of the corners until it
changes to this shape:

b Hold down the left mouse button and drag the block to the desired size.

5 Save Stage1Interface, but leave the Stateflow Editor open for the next
exercise.

3-17

3 Defining the Interface to Simulink

Tip There are several ways to add data objects to Stateflow charts. You
used the Stateflow Editor, which allows you to add data elements to the
Stateflow chart that is open and has focus. However, to add data objects not
just to a chart, but anywhere in the Stateflow design hierarchy, you can use
a tool called the Model Explorer. This tool also lets you view and modify the
data objects you have already added to Stateflow. For more information, see
“Stateflow Hierarchy of Objects” and “Adding Data Using the Model Explorer”
in the online Stateflow User’s Guide documentation. You can also add data
objects programmatically using the Stateflow API, as described in “Creating
Stateflow Objects” in the online Stateflow API documentation.

Connecting the Stateflow Block to the Simulink
Subsystem
Now that you have defined the inputs and outputs for the Stateflow Air
Controller block, you need to connect them to the corresponding signals of the
Simulink Physical Plant subsystem. Follow these steps:

1 In the model Stage1Interface, connect the output airflow from Air
Controller to the corresponding input in Physical Plant:

a Position the cursor over the output port for airflow on the right side
of the Air Controller block.

Notice that the cursor shape changes to crosshairs.

b Hold down the left mouse button and move the cursor to the input port
for airflow on the left side of the Physical Plant block.

c Release the mouse.

3-18

Implementing the Interface

The connection should look something like this:

Tip There is a shortcut for automatically connecting blocks. Select the
source block, and then hold down the Ctrl key and left-click the destination
block.

2 Connect the output temp from the Physical Plant to the corresponding
input in Air Controller by drawing a branch line from the line that connects
temp to the Scope:

a Position the cursor on the line where you want the branch line to start.

b While holding down the Ctrl key, press and hold down the left mouse
button.

c Drag the cursor to the input port for temp on the left side of the Air
Controller block.

d Release the mouse button and the Ctrl key.

3-19

3 Defining the Interface to Simulink

e Reposition the connection so that it looks like this:

Tip To reposition connections, hold down the left mouse button over any
side of the connection line so that the cursor changes to this symbol:

Drag the line to a new location.

3 Save Stage1Interface.

Where to go next. Now you are ready to begin phase 2 of the workflow:
Chapter 4, “Defining the States for Modeling Each Mode of Operation”.

3-20

4

Defining the States for
Modeling Each Mode of
Operation

)
��
���	��(��
���!!��	���	
����

'
������	���
�����������

&��(���	������

+
�� �����
���	
����

*
��&�!
���	
����

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

#
������	���
�������
�
��	�� ����$

%
������

�����	�
�����
���	�����&���

You have entered phase 2 of a basic workflow for building a Stateflow chart:
defining the states for modeling each mode of operation. This chapter presents
the design questions that you must answer and guides you through exercises
for implementing the states, based on your design decisions.

Design Considerations for Defining
the States (p. 4-2)

Poses the design questions for phase
2 of the workflow and presents the
rationale for the solutions

Implementing the States (p. 4-7) Provides hands-on exercises that
show you how to implement the
states as designed

4 Defining the States for Modeling Each Mode of Operation

Design Considerations for Defining the States
You should consider the following design questions when defining the states
for modeling each mode of operation in your control system:

• Do I need states at all?

• What states are required?

• What is the hierarchy of states?

• What is the decomposition of the states?

When to Use States
Whether or not to use states depends on the control logic you want to
implement. Stateflow allows you to model two types of control logic: finite
state machines and stateless flow charts. Each is optimized for different
applications, as follows:

Control Logic Optimized for Modeling

Finite state
machines

Physical systems that transition between a finite
number of operating modes. In Stateflow charts, you
represent each mode as a state.

Stateless flow
chart

Abstract logic patterns — such as if, if-else, and
case statements — and iterative loops — such as
for, while, and do loops. These logic constructs are
represented by connective junctions and transitions in
Stateflow charts. No states are required. See “Flow
Diagram Notation with Connective Junctions” in the
online Stateflow User’s Guide documentation.

The Stateflow Air Controller chart is a system that cools a physical plant
by transitioning between several modes of operation and, therefore, can be
modeled as a finite state machine. In the following sections, you will design
the states that model each mode of operation.

4-2

Design Considerations for Defining the States

Determining the States to Define
States model modes of operation in a physical system. To determine the
number and type of states required for your Air Controller chart, you must
identify each mode in which the system can operate. Often, a table or grid
is helpful for analyzing each mode and determining dependencies between
modes.

Analysis of Operating Modes
For Air Controller, the modes of operation are

Operating
Mode

Description Dependencies

Power Off Turns off all power in
the control system

No fan can operate when power
is off.

Power On Turns on all power in
the control system

Zero, one, or two fans can
operate when power is on.

Fan 1 Activates Fan 1 Fan 1 can be active at the same
time as Fan 2. When activated,
Fan 1 can turn on or off.

Fan 1 On Cycles on Fan 1 Fan 1 On can be active if Fan 1
is active and power is on.

Fan 1 Off Cycles off Fan 1 Fan 1 Off can be active if Fan 1
is active, and power is on.

Fan 2 Activates Fan 2 Fan 2 can be active at the same
time as Fan 1. When activated,
Fan 2 can turn on or off.

Fan 2 On Cycles on Fan 2 Fan 2 On can be active if Fan 2
is active and power is on.

4-3

4 Defining the States for Modeling Each Mode of Operation

Operating
Mode

Description Dependencies

Fan 2 Off Cycles off Fan 2 Fan 2 Off can be active if Fan 2
is active and power is on.

Calculate
airflow

Calculates a constant
value of 0, 1, or 2 to
indicate how fast air
is flowing. Outputs
this value to the
Simulink subsystem
for selecting a cooling
factor.

Calculates the constant value,
based on how many fans have
cycled on at each time step.

Number of States to Define
The number of states depends on the number of operating modes to be
represented. In “Analysis of Operating Modes” on page 4-3, you learned that
the Air Controller chart has nine operating modes. Therefore, you need to
define nine states to model each mode. Here are the names you will assign to
the states that represent each operating mode in “Implementing the States”
on page 4-7:

State Name Operating Mode

PowerOff Power Off

PowerOn Power On

FAN1 Fan 1

FAN2 Fan 2

SpeedValue Calculate airflow

FAN1.On Fan 1 On

FAN1.Off Fan 1 Off

FAN2.On Fan 2 Off

FAN2.Off Fan 2 Off

4-4

Design Considerations for Defining the States

Note Notice the use of dot notation to refer to the On and Off states for FAN1
and FAN2. You use namespace dot notation to give objects unique identifiers
when they have the same name in different parts of the Stateflow model
hierarchy.

Determining the Hierarchy of States
Objects in Stateflow can exist in a hierarchy. For example, states can contain
other states — referred to as substates — and, in turn, can be contained
by other states — referred to as superstates. You need to determine the
hierarchical structure of states you will define for the Air Controller chart.
Often, dependencies among states imply a hierarchical relationship — such
as parent to child — between the states.

Based on the dependencies described in “Analysis of Operating Modes” on
page 4-3, here is an analysis of state hierarchy for the Air Controller chart:

Dependent States Implied Hierarchy

FAN1 and FAN2 depend on PowerOn.
No fan can operate unless PowerOn
is active.

FAN1 and FAN2 should be substates
of a PowerOn state.

FAN1.On and FAN1.Off depend on
Fan1 and PowerOn. FAN1 must be
active before it can be cycled on or
off.

FAN1 should have two substates,
On and Off. In this hierarchical
relationship, On and Off will inherit
from FAN1 the dependency on
PowerOn.

FAN2.On and FAN2.Off depend on
FAN2 and PowerOn. FAN2 must be
active before it can be cycled on or
off.

FAN2 should have two substates,
On and Off. In this hierarchical
relationship, On and Off will inherit
from FAN2 the dependency on
PowerOn.

The state that calculates airflow
needs to know how many fans are
running at each time step.

The state that calculates airflow
should be a substate of PowerOn so
it can check the status of FAN1 and
FAN2 at the same level of hierarchy.

4-5

4 Defining the States for Modeling Each Mode of Operation

Determining the Decomposition of States
The decomposition of a state dictates whether its substates execute exclusively
of each other — as exclusive (OR) states — or can be activated at the same
time — as parallel (AND) states. No two exclusive (OR) states can ever be
active at the same time, while any number of parallel (AND) states can be
activated concurrently.

The Air Controller chart requires both types of states. Here is a breakdown of
the exclusive (OR) and parallel (AND) states required for the Stateflow chart:

State Decomposition Rationale

PowerOff,
PowerON

Exclusive (OR)
states

The power can never be on and off at
the same time.

FAN1, FAN2 Parallel (AND)
states

Zero, one, or two fans can operate at
the same time, depending on how much
cooling is required.

FAN1.On,
FAN1.Off

Exclusive (OR)
states

Fan 1 can never be on and off at the
same time.

FAN2.On,
FAN2.Off

Exclusive (OR)
states

Fan 2 can never be on and off at the
same time.

SpeedValue Parallel (AND)
state

SpeedValue is an observer state that
monitors the status of Fan 1 and Fan
2, updating its output based on how
many fans are operating at each time
step. SpeedValue must be activated at
the same time as Fan 1 and Fan 2, but
execute last so it can capture the most
current status of the fans.

4-6

Implementing the States

Implementing the States
When you add states to the Air Controller chart, you will work from the top
down in the Stateflow hierarchy, as follows:

• “Adding the Power On and Power Off States” on page 4-7

• “Adding and Configuring Parallel States” on page 4-10

• “Adding the On and Off States for the Fans” on page 4-16

Adding the Power On and Power Off States
As you learned in “Determining the Decomposition of States” on page 4-6,
the PowerOff and PowerOn states are exclusive (OR) states that turn power
off and on in the control system. These states are never active at the same
time. By default, states are exclusive (OR) states, represented graphically as
rectangles with solid borders.

To add PowerOn and PowerOff to your Stateflow chart, follow these steps:

1 Open the model Stage1Interface and save it as Stage2States in the
same directory.

2 In Stage2States, double-click the Air Controller block to open the
Stateflow chart.

4-7

4 Defining the States for Modeling Each Mode of Operation

The Stateflow Editor for Air Controller opens on your desktop. Notice the
object palette on the left side of the editor window. This palette displays a
set of tools for drawing graphical Stateflow chart objects, including states:

�����	����	�
��

3 Left-click the state tool icon:

4 Move your cursor into the drawing area.

The cursor changes to a rectangle, the graphical representation of a state.

5 Click in the upper-left corner of the drawing area to place the state.

The new state appears with a blinking text cursor in its upper-left corner.

4-8

Implementing the States

6 At the text cursor, type PowerOn to name the state.

Tip If you click away from the text cursor before typing the new name, the
cursor changes to a question mark. Click the question mark to restore
the text cursor.

7 Move the cursor to the lower-right corner of the rectangle so it changes
to this symbol:

8 Drag the lower-right corner to enlarge the state as shown:

4-9

4 Defining the States for Modeling Each Mode of Operation

9 Click the state tool icon again and draw a smaller state named PowerOff at
the bottom of the drawing area, like this:

10 Save the chart by clicking Save Model in the File menu of the Stateflow
Editor, but leave the Stateflow Editor open for the next exercise.

Adding and Configuring Parallel States
In “Determining the States to Define” on page 4-3, you learned that FAN1,
FAN2, and SpeedValue will be represented by parallel (AND) substates of the
PowerOn state. Stateflow represents parallel states graphically as rectangles
with dashed borders.

4-10

Implementing the States

In this set of exercises, you will learn how to

• Assign parallel decomposition to PowerOn so its substates can be activated
concurrently.

Recall that the decomposition of a state determines whether its substates
will be exclusive or parallel.

• Add parallel substates to a state in the chart.

• Set the order of execution for the parallel substates.

Even though parallel states can be activated concurrently, they execute
in a sequential order.

Setting Parallel Decomposition
Follow these steps:

1 In the Stateflow Editor for the chart Air Controller, right-click inside
PowerOn.

A submenu opens, presenting tasks you can perform and properties you
can set for the selected state.

2 In the submenu, select Decompostion > Parallel (AND).

3 Save the model Stage2States, but leave the Stateflow Editor open for
the next exercise.

Adding the Fan States
Follow these steps:

1 Left-click the state tool icon in the Stateflow Editor and place two states
inside the PowerOn state.

Tip Instead of using the state tool icon to add multiple states, you can
right-click inside an existing state and drag a copy to a new position in the
chart. This shortcut is convenient when you need to create states of the
same size and shape, such as the fan states.

4-11

4 Defining the States for Modeling Each Mode of Operation

2 Notice the appearance of the states you just added.

The borders of the two states appear as dashed lines, indicating that
they are parallel states. Note also that the substates display numbers in
their upper-right corners. These numbers specify the order of execution.
Although multiple parallel (AND) states in the same chart are activated
concurrently, Stateflow must determine when to execute each one during
simulation.

3 Name the new substates FAN1 and FAN2.

You have created hierarchy in the Air Controller chart. PowerOn is now a
superstate while FAN1 and FAN2 are substates. Your chart should look like
something like this:

4-12

Implementing the States

Note Your chart may not show the same execution order for parallel
substates FAN1 and FAN2. The reason is that, by default, Stateflow orders
parallel states based on where they are located in the state diagram.
Priority goes from top to bottom and then left to right. If FAN2 is higher
in position than FAN1 in your diagram, FAN2 moves to the top of the order.
You will fine-tune order of activation in a later exercise, “Setting Explicit
Ordering of Parallel States” on page 4-14.

Tip If you want to move a state together with its substates — and any
other graphical objects it contains — double-click the state. It turns gray,
indicating that the state is grouped with the objects inside it and that they
can be moved as a unit. To ungroup the objects, double-click again.

4 Save the model Stage2States, but leave the Stateflow Editor open for
the next exercise.

Adding the SpeedValue State
Recall that SpeedValue acts as an observer state, which monitors the status
of the FAN1 and FAN2 states. To add the SpeedValue state, follow these steps:

1 Add another substate to PowerOn under FAN1 and FAN2, either by using the
state tool icon or copying an existing state in the chart.

You may need to resize the substate so that it doesn’t overlap any other
substate, but remains within the borders of PowerOn.

4-13

4 Defining the States for Modeling Each Mode of Operation

2 Name the state SpeedValue.

Like FAN1 and FAN2, SpeedValue appears as a parallel substate because its
parent, the superstate PowerOn, has parallel decomposition.

3 Save the model Stage2States, but leave the Stateflow Editor open for the
next exercise, “Setting Explicit Ordering of Parallel States” on page 4-14.

Setting Explicit Ordering of Parallel States
Recall that, by default, Stateflow assigns execution order of parallel states
based on their locations in the chart. This is called implicit ordering. Implicit
ordering creates a dependency between design layout and execution priority.
When you rearrange parallel states in your diagram, you may change order
of execution and affect simulation results. In this exercise, you will override
this default so you can set execution order explicitly for each parallel state
in your chart.

4-14

Implementing the States

Follow these steps:

1 In the Stateflow Editor, select Chart Properties from the File menu.

The properties dialog box for the Air Controller chart opens on your desktop.

2 Select the check box User specified state/transition execution order
and click OK.

4-15

4 Defining the States for Modeling Each Mode of Operation

Note Selecting this option also allows you to explicitly specify the order
in which transitions are executed when there is a choice of transitions to
take from one state to another. This is not an issue for the Air Controller
chart because it is deterministic: for each exclusive (OR) state, there is one
and only one transition to a next exclusive (OR) state. You will learn more
about transitions in “Drawing the Transitions Between States” on page 6-5.

3 Assign order of execution for each parallel state in the Air Controller chart:

a Right-click inside each parallel state to bring up its state properties
submenu.

b From the submenu, select Execution Order and make the following
assignments:

For State: Assign:

FAN1 1

FAN2 2

SpeedValue 3

Here is the rationale for this order of execution:

• FAN1 should execute first because it cycles on at a lower temperature
than FAN2.

• SpeedValue should execute last so it can observe the most current
status of FAN1 and FAN2.

4 Save the model Stage2States, but leave the Stateflow Editor open for the
next exercise, “Adding the On and Off States for the Fans” on page 4-16.

Adding the On and Off States for the Fans
In this exercise, you will enter the on and off substates for each fan.
Because fans cannot cycle on and off at the same time, these states must be
exclusive, not parallel. Even though FAN1 and FAN2 are parallel states, their
decomposition is exclusive (OR) by default. As a result, any substate that you
add to FAN1 or FAN2 will be an exclusive (OR) state.

4-16

Implementing the States

Follow these steps:

1 Add two substates inside FAN1 and FAN2.

2 Resize the substates to fit within the borders of FAN1 and FAN2.

3 In each fan state, name one substate On and name the other Off.

Your Air Controller chart should now look something like this:

4 Save the model Stage2States.

Where to go next. Now you are ready to begin phase 3 of the workflow:
Chapter 5, “Defining State Actions and Variables”.

4-17

4 Defining the States for Modeling Each Mode of Operation

4-18

5

Defining State Actions and
Variables

)
��
���	��(��
���!!��	���	
����

+
�� �����
���	
����

*
��&�!
���	
����

#
������	���
�������
�
��	�� ����$

'
������	���
�����������

&��(���	������

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

%
������

�����	�
�����
���	�����&���

You have entered phase 3 of a basic workflow for building a Stateflow chart:
defining state actions and variables. This chapter presents the design
questions that you must answer and guides you through exercises for defining
state actions and variables, based on your design decisions.

Design Considerations for Defining
State Actions and Variables (p. 5-2)

Poses the design questions for phase
3 of the workflow and presents the
rationale for the solutions

Implementing State Actions (p. 5-5) Provides hands-on exercises that
show you how to implement the state
actions as designed

5 Defining State Actions and Variables

Design Considerations for Defining State Actions and
Variables

You should consider the following design questions when defining state
actions and variables:

• Do I need to define any local or persistent variables in my Stateflow chart?

• Should any of my states perform actions when they become active?

• What type of state action should I use?

Defining State Variables
At this stage of the workflow for developing Stateflow charts, you need
to determine if any of your states require local or persistent variables. If
so, you define these data elements using the Stateflow Editor or the Model
Explorer, as described in “Adding Data” in the online Stateflow User’s Guide
documentation.

The states in the Air Controller chart do not require local or persistent data,
only the input and output data that you defined in “Defining the Inputs and
Outputs” on page 3-10.

Determining Whether to Use State Actions
During simulation of a Stateflow chart, states can perform actions while they
are active. Often, actions are used to manipulate data, using a variety of
constructs such as binary, bitwise, unary, assignment, pointer, and type cast
operators (see “Using Actions in Stateflow” in the online Stateflow User’s
Guide documentation).

When building the Air Controller chart, you need to determine whether any
states should perform actions. Some charts may not use state actions at all,
but instead perform actions only during the transitions from state to state.
Other charts require both types of state actions.

For the Air Controller chart, think about whether data values need to be
initialized or modified during any of its modes of operation. Recall that
the chart receives the air temperature of the plant as the input temp from
Simulink. The chart then uses this value to activate fans if necessary to cool

5-2

Design Considerations for Defining State Actions and Variables

the air. Based on how many fans are running, the chart sets a value that
indicates speed of airflow, which it sends at each time step to Simulink as the
output airflow. The Air Controller does not modify the value of temp, but
does need to update the value of airflow.

The next consideration is when to update, and for that matter, initialize
the value of airflow. If the when translates to a mode of operation, the
action should likely be performed by the state that represents that mode of
operation. Here is the analysis for the Air Controller chart:

Action When How

Initialize airflow
to 0.

Before simulation Set an initial value when you
first define airflow (as you
did in “Defining the Inputs
and Outputs” on page 3-10).

Set airflow to 0. Whenever power is
off

Add an action in the state
PowerOff.

Update airflow to
0, 1, or 2, based on
how many fans are
running.

Whenever power is
on

Add an action in the state
SpeedValue, which becomes
active concurrently with FAN1
and FAN2 when the state
PowerOn is active.

5-3

5 Defining State Actions and Variables

Determining the Type of State Action to Use
States perform actions at different phases of their execution cycle from the
time they become active to the time they become inactive. Three basic state
actions are

Type of
Action

When Executed How Often Executed
While State Is Active

Entry When the state is entered
(becomes active)

Once

During While the state is active
and no valid transition to
another state is available

At every time step

Exit Before a transition is taken
to another state

Once

For example, you can use entry actions to initialize data, during actions to
update data, and exit actions to configure data for the next transition. (There
are other types of state actions, but they involve concepts that go beyond the
scope of this guide. For more information, see “Using Actions in Stateflow” in
the online Stateflow User’s Guide documentation.)

Based on the requirements in “Determining Whether to Use State Actions” on
page 5-2, you will write the following state actions for the Air Controller chart:

• Entry action in state PowerOff to set airflow to 0

• During action in state SpeedValue to calculate the value of airflow at
every time step

5-4

Implementing State Actions

Implementing State Actions
To implement the state actions as designed, you need to perform the following
tasks:

• “Writing an Entry Action” on page 5-5

• “Writing a During Action” on page 5-6

Writing an Entry Action
The syntax for entry actions is

entry:one or more actions;
en:one or more actions;

To write the entry action for PowerOff, follow these steps:

1 Open the model Stage2States and save it as Stage3Actions in the same
directory.

2 In Stage3Actions, double-click the Air Controller block to open the
Stateflow chart.

3 Click inside the PowerOff state after the last letter of its name label to
get a blinking text cursor.

4 Press the Enter key and type

entry: airflow = 0;

5-5

5 Defining State Actions and Variables

Your chart should look like this:

5 Save Stage3Actions, but leave the Stateflow Editor open for the next
exercise.

Writing a During Action
The syntax for during actions is

during:one or more actions;
du:one or more actions;

The during action for SpeedValue uses a Boolean expression to determine
whether zero, one, or two fans are running at each time step.

5-6

Implementing State Actions

To write the during action for SpeedValue, follow these steps:

1 Click inside the SpeedValue state after the last letter of its name label to
get a blinking text cursor.

2 Press the Enter key and type

during: airflow = in(FAN1.On) + in(FAN2.On);

Your chart should look like this:

5-7

5 Defining State Actions and Variables

The Boolean expression in(FAN1.On) is true — and its value equals 1 — if
the On state of FAN1 is active. If FAN1 is not on — that is, its Off state is
active or power is off — then in(FAN1.On) equals 0. Similarly, the value of
in(FAN2.On) represents whether FAN2 is on or off. Therefore, the sum of
these Boolean expressions indicates whether 0, 1, or 2 fans are operating
during each time step.

3 Save the model Stage3Actions.

Where to go next. Now you are ready to begin phase 4 of the workflow:
Chapter 6, “Defining Transitions Between States”.

5-8

6

Defining Transitions
Between States

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

+
�� �����
���	
����

*
��&�!
���	
����

#
������	���
�������
�
��	�� ����$

'
������	���
�����������

&��(���	������

)
��
���	��(��
���!!��	���	
����

%
������

�����	�
�����
���	�����&���

You have entered phase 4 of a basic workflow for building a Stateflow chart:
defining the transitions between states. This chapter presents the design
questions you must answer and guides you through exercises for defining
transitions, based on your design decisions.

Design Considerations for Defining
Transitions Between States (p. 6-2)

Poses the design questions for phase
4 of the workflow and presents the
rationale for the solutions

Adding the Transitions (p. 6-5) Provides hands-on exercises that
show you how to implement the
transitions as designed

6 Defining Transitions Between States

Design Considerations for Defining Transitions Between
States

Transitions create paths for the logic flow of a system from one state to
another. When a transition is taken from state A to state B, state A becomes
inactive and state B becomes active.

Transitions have direction and are represented in a Stateflow chart by lines
with arrowheads. Transitions are unidirectional, not bidirectional. You must
add a transition for each direction of flow between two states.

You should consider the following design questions when defining transitions
between states:

• How does my state machine transition from one operating mode to another?

• Where should I place default transitions?

• How should I guard each transition from one state to another?

Determining How and When to Transition Between
Operating Modes
Exclusive (OR) states require transitions. Recall that no two exclusive states
can be active at the same time. Therefore, you need to add transitions to
specify when and where control flows from one exclusive state to another.

Typically, parallel (AND) states do not require transitions because they
execute concurrently.

The Air Controller chart models a system in which power can cycle on and off
and, while power is on, fans can cycle on and off. Six exclusive (OR) states
represent these operating modes. To model this activity, you need to add the
following transitions between exclusive (OR) states:

• PowerOff to PowerOn

• PowerOn to PowerOff

• FAN1.Off to FAN1.On

• FAN1.On to FAN1.Off

6-2

Design Considerations for Defining Transitions Between States

• FAN2.Off to FAN2.On

• FAN2.On to FAN2.Off

Placing Default Transitions
Good design practice in Stateflow requires that you specify default transitions
for exclusive (OR) states at each level of hierarchy. Default transitions
indicate which exclusive (OR) state is to be active when there is ambiguity
between two or more exclusive (OR) states at the same level in the Stateflow
hierarchy. There are three such areas of ambiguity in the Air Controller chart:

• When the chart wakes up, should power be on or off?

• When FAN1 becomes active, should it be on or off?

• When FAN2 becomes active, should it be on or off?

In each case, the initial state should be off so you will add default transitions
to the states PowerOff, FAN1.Off, and FAN2.Off.

Guarding the Transitions
Guarding a transition means specifying a condition, action, or event that
allows the transition to be taken from one state to another. Based on the
design of the Air Controller chart, here are the requirements for guarding the
transitions from one exclusive operating mode to another:

Transition When Should It
Occur?

How to Guard It

PowerOff to PowerOn

PowerOn to PowerOff

At regular time
intervals

Specify an
edge-triggered event

6-3

6 Defining Transitions Between States

Transition When Should It
Occur?

How to Guard It

FAN1.Off to FAN1.On When the temperature
of the physical plant
rises above 120 degrees

FAN1.On to FAN1.Off When the temperature
of the physical plant
falls below 120 degrees

FAN2.Off to FAN2.On When the temperature
rises above 150 degrees,
a threshold indicating
that first fan is not
providing the required
amount of cooling

FAN2.On to FAN2.Off When the temperature
falls below 150 degrees

Specify a condition
based on temperature
value

6-4

Adding the Transitions

Adding the Transitions
To implement the transitions as designed, you need to perform the following
tasks:

• “Drawing the Transitions Between States” on page 6-5

• “Adding Default Transitions” on page 6-8

• “Adding Conditions to Guard Transitions” on page 6-11

• “Adding Events to Guard Transitions” on page 6-13

Drawing the Transitions Between States
In “Design Considerations for Defining Transitions Between States” on page
6-2, you learned that the following transitions occur in the Air Controller
chart:

• Power for the control system can cycle on and off.

• Each fan can cycle on and off.

You will model this activity by drawing transitions between the PowerOn
and PowerOff states and between the On and Off states for each fan. Follow
these steps:

1 Open the model Stage3Actions and save it as Stage4Transitions in the
same directory.

2 In Stage4Transitions, double-click the Air Controller block to open the
Stateflow chart.

The Stateflow Editor for Air Controller opens on your desktop.

3 Draw transitions between the PowerOff to PowerOn states:

a Move the cursor over the top edge of PowerOff until the cursor shape
changes to crosshairs.

b Hold down the left mouse button, drag the cursor to the bottom edge of
PowerOn, and release the mouse.

6-5

6 Defining Transitions Between States

You should see a transition pointing from PowerOff to PowerOn:

c Follow the same procedure to draw a transition from PowerOn to
PowerOff.

6-6

Adding the Transitions

Your chart should now look like this:

4 Follow the procedure described in step 3 to draw the following transitions
between the Off and On states for each fan:

• Transition from Off to On in FAN1

• Transition from On to Off in FAN1

• Transition from Off to On in FAN2

• Transition from On to Off in FAN2

6-7

6 Defining Transitions Between States

Your chart should now look like this:

5 Save Stage4Transitions, but leave the Stateflow Editor open for the next
exercise.

Adding Default Transitions
In “Placing Default Transitions” on page 6-3, you learned that you need to add
default transitions to PowerOff, FAN1.Off, and FAN2.Off. Follow these steps:

1 In the Stateflow Editor, left-click the default transition icon in the object
palette:

2 Move your cursor into the drawing area.

6-8

Adding the Transitions

The cursor changes to a diagonal arrow.

3 Place the cursor at the left edge of the PowerOff state.

4 When the arrow becomes orthogonal to the edge, release the mouse button.

The default transition attaches to the PowerOff state. It appears as a
directed line with an arrow at its head and a closed tail:

5 Repeat the same procedure to add default transitions at the top edges of
FAN1.Off and FAN2.Off.

6-9

6 Defining Transitions Between States

Your chart should now look like this:

6-10

Adding the Transitions

Tip The location of the tail of a default transition determines the state
it activates. Therefore, you must make sure that your default transition
fits completely inside the parent of the state that it activates. In the Air
Controller chart pictured above, notice that the default transition for
FAN1.Off correctly resides inside the parent state, FAN1. Now consider
this chart:

In this example, the tail of the default transition resides in PowerOn, not in
FAN1. Therefore, it will activate FAN1 instead of FAN1.Off.

6 Save Stage4Transitions, but leave the Stateflow Editor open for the next
exercise.

Adding Conditions to Guard Transitions
Conditions are expressions enclosed in square brackets that evaluate to true
or false. When the condition is true, the transition is taken to the destination
state; when the condition is false, the transition is not taken and the state of
origin remains active.

As you learned in “Guarding the Transitions” on page 6-3, the fans cycle on
and off depending on the air temperature. In this exercise, you will add
conditions to the transitions in FAN1 and FAN2 that model this behavior.

6-11

6 Defining Transitions Between States

Follow these steps:

1 Click the transition from FAN1.Off to FAN1.On.

The transition appears highlighted and displays a question mark (?).

2 Click next to the question mark to display a blinking text cursor.

3 Type the following expression:

[temp >= 120]

You may need to reposition the condition for readability. Click outside
the condition, then left-click and drag the condition expression to a new
location.

4 Repeat these steps to add the following conditions to the other transitions
in FAN1 and FAN2:

Transition Condition

FAN1.On to FAN1.Off [temp < 120]

FAN2.Off to FAN2.On [temp >= 150]

FAN2.On to FAN2.Off [temp < 150]

6-12

Adding the Transitions

Your chart should look like this:

5 Save Stage4Transitions, but leave the Stateflow Editor open for the next
exercise.

Adding Events to Guard Transitions
Events are nongraphical objects that trigger activities during the execution of
a Stateflow chart. Depending on where and how events are defined, they can
trigger a transition to occur, an action to be executed, and state status to be
evaluated. In this exercise, you will define an event that triggers transitions.

As you learned in “Guarding the Transitions” on page 6-3, the control system
should power on and off at regular intervals. You model this behavior by first
defining an event that occurs at the rising or falling edge of an input signal,
and then associating that event with the transitions between the PowerOn
and PowerOff states.

6-13

6 Defining Transitions Between States

Follow these steps to define an edge-triggered event and associate it with
the transitions:

1 In the Stateflow Editor, add an input event by selecting Event > Input
from Simulink from the Add menu.

The Event properties dialog box opens on your desktop:

Note that the event is assigned to trigger port 1.

2 Edit the following properties:

Property What to Specify

Name Change the name to SWITCH.

Trigger Select Either from the drop-down menu so the event
can be triggered by either the rising edge or falling edge
of a signal.

6-14

Adding the Transitions

3 Click OK to record the changes and close the dialog box.

4 Look back at the Simulink model and notice that a trigger port appears at
the top of the Stateflow block:

���!!��	"���

When you define one or more input events for a chart, Stateflow adds a
single trigger port to the block. External Simulink blocks can trigger the
input events via a signal or vector of signals connected to the trigger port.

5 Back in the Stateflow Editor, associate the input event SWITCH with the
transitions:

a Select the transition from PowerOff to PowerOn and click the question
mark to get a text cursor.

b Type the name of the event you just defined, SWITCH.

You may need to reposition the event text for readability. If so, click
outside the text string, left-click the text, and drag it to the desired
location.

6-15

6 Defining Transitions Between States

c Repeat these steps to add the same event, SWITCH, to the transition from
PowerOn to PowerOff.

Your chart should now look something like this:

Now that you have associated these transitions with the event SWITCH, the
control system will alternately power on and off every time SWITCH occurs
— that is, every time the chart detects a rising or falling signal edge.

6-16

Adding the Transitions

Note that the Simulink sf_aircontrol model has already defined the
pulse signal SWITCH in the Signal Builder block at the top level of the
model hierarchy:

In the next phase of the workflow, you will connect your Stateflow chart to
the SWITCH signal to trigger the transitions between power on and power off.

6 Save Stage4Transitions.

Where to go next. Now you are ready to begin phase 5 of the workflow:
Chapter 7, “Triggering a Stateflow Chart”.

6-17

6 Defining Transitions Between States

6-18

7

Triggering a Stateflow
Chart

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

*
��&�!
���	
����

#
������	���
�������
�
��	�� ����$

)
��
���	��(��
���!!��	���	
����

+
�� �����
���	
����

'
������	���
�����������

&��(���	������

%
������

�����	�
�����
���	�����&���

You have entered phase 5 of a basic workflow for building a Stateflow chart:
deciding how to trigger the chart. This chapter presents the design questions
that you must answer and guides you through exercises for adding triggers,
based on your design decisions.

Design Considerations for Triggering
Stateflow Charts (p. 7-2)

Examines the design considerations
for phase 5 of the workflow and
presents the rationale for the
solutions

Implementing the Triggers (p. 7-3) Provides hands-on exercises that
show you how to specify the triggers
as designed

7 Triggering a Stateflow Chart

Design Considerations for Triggering Stateflow Charts
Simulink can wake up a Stateflow chart by

• Sampling the chart at a specified or inherited rate

• Using a signal as a trigger

• Using one Stateflow chart to drive the activity of another

A signal trigger works best for the Air Controller chart because it needs to
monitor the temperature of the physical plant at regular intervals. To meet
this requirement, you will use a periodic signal to trigger the chart. The
source is a square wave signal called CLOCK, provided by a Signal Builder
block in the Simulink model, described in “How the Stateflow Chart Works
with the Simulink Model” on page 2-6. To harness the signal, you will set
up an edge trigger event in Stateflow that wakes the chart at the rising or
falling edge of CLOCK.

The rationale for using an edge trigger in this case is that it uses the
regularity and frequency of the signal to wake up the chart. When using edge
triggers, it is important to note that there can be a delay from the time the
trigger occurs to the time the chart begins executing. This is because an edge
trigger causes the chart to execute at the beginning of the next simulation
time step, regardless of when the edge trigger actually occurred during the
previous time step. The Air Controller can tolerate this delay, as long as
the edge occurs frequently enough. (For more information about triggering
Stateflow charts, see “Implementing Simulink Update Interfaces” in the
online Stateflow User’s Guide documentation.)

Recall that you already defined one edge-triggered event, SWITCH, to guard
the transitions between PowerOff and PowerOn. You will now define a second
edge-triggered event, CLOCK, to wake up the chart.

7-2

Implementing the Triggers

Implementing the Triggers
To implement the trigger as defined, you need to perform the following tasks:

• “Defining the CLOCK Event” on page 7-3

• “Connecting the Edge-Triggered Events to the Input Signals” on page 7-4

Defining the CLOCK Event
To define the CLOCK event, follow these steps:

1 Open the model Stage4Transitions and save it as Stage5Trigger in the
same directory.

2 In Stage5Trigger, double-click the Air Controller block to open the
Stateflow chart.

The Stateflow Editor for Air Controller opens on your desktop.

3 In the Stateflow Editor, add an input event by selecting Event > Input
from Simulink from the Add menu.

4 In the Event properties dialog box, edit the following fields:

Property What to Specify

Name Change the name to CLOCK.

Trigger Select Either from the drop-down menu so the event
can be triggered by either the rising edge or falling edge
of a signal.

Because the SWITCH event you created in “Adding Events to Guard
Transitions” on page 6-13 was assigned to trigger port 1, the CLOCK event is
assigned to trigger port 2. Nevertheless, only one trigger port appears at
the top of the Air Controller block to receive trigger signals. This means
that each signal must be indexed into an array, as described in “Connecting
the Edge-Triggered Events to the Input Signals” on page 7-4.

5 Click OK to record the changes and close the dialog box.

7-3

7 Triggering a Stateflow Chart

6 Save Stage5Trigger, but leave it open for the next exercise.

Connecting the Edge-Triggered Events to the Input
Signals
You need to connect the edge-triggered events to the Simulink input signals
in a way that

• Associates each event with the correct signal

• Indexes each signal into an array that can be received by the Air Controller
trigger port

In Stage5Trigger, notice that the two input signals SWITCH and CLOCK feed
into a Mux block where they are joined in an array to a single output. SWITCH
is a pulse signal and CLOCK is a square wave. When you connect the Mux to
the trigger port, the index of the signals in the array are associated with the
like-numbered ports. Therefore, the SWITCH signal at the top input port of the
Mux triggers the event SWITCH on trigger port 1. Likewise, the CLOCK signal
at the second input port of the Mux triggers the event CLOCK on trigger port 2.

To connect the Mux to the trigger port, follow these steps:

1 Click the Mux block, hold down the Ctrl key, and click the Air Controller
block.

7-4

Implementing the Triggers

The output signal of the Mux block connects to the input trigger port of the
Stateflow block. Your chart should look like this:

2 Save Stage5Trigger.

Where to go next. Now you are ready to begin phase 6 of the workflow:
Chapter 8, “Simulating the Chart”.

7-5

7 Triggering a Stateflow Chart

7-6

8

Simulating the Chart

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

#
������	���
�������
�
��	�� ����$

'
������	���
�����������

&��(���	������

+
�� �����
���	
����

*
��&�!
���	
����

)
��
���	��(��
���!!��	���	
����

%
������

�����	�
�����
���	�����&���

You have entered phase 6 of a basic workflow for building a Stateflow chart:
simulating the chart. By the time you reach this phase, you have finished
building your chart and integrating it with the Simulink model. Now it is
time to test the chart by simulating its run-time behavior. During simulation,
you can animate Stateflow charts to highlight states and transitions as they
execute. This chapter guides you through the tasks required for simulating
the chart with animation.

Preparing Charts for Simulation
(p. 8-3)

Describes common design problems
to check for in your Stateflow chart
to minimize errors during simulation

Setting Simulation Parameters
(p. 8-4)

Shows how to set parameters to
control simulation

Animating Stateflow Charts (p. 8-6) Describes how to animate Stateflow
charts during simulation

8 Simulating the Chart

Setting Breakpoints (p. 8-9) Shows how to set breakpoints and
examine data in the debugger so you
can observe key run-time behaviors
of your chart during simulation

Simulating the Air Controller Chart
(p. 8-11)

Describes how to simulate the Air
Controller chart and examines the
run-time behavior

8-2

Preparing Charts for Simulation

Preparing Charts for Simulation
Before starting a simulation session, you should examine your chart to ensure
that it conforms to recommended design practices:

• There must be a default transition at every level of the Stateflow hierarchy
that contains exclusive (OR) states (has exclusive [OR] decomposition).
(See “Placing Default Transitions” on page 6-3.)

• Whenever possible, input data objects should inherit properties from the
associated input signal in Simulink to ensure consistency, minimize data
entry, and simplify maintenance of your model. Recall that in “Defining the
Inputs and Outputs” on page 3-10, you defined the input temp to inherit its
size and type from the Simulink output port temp, which provides the input
value to the Air Controller chart.

• Output data objects should not inherit types and sizes because the values
are back propagated from Simulink and may, therefore, be unpredictable.
Recall that in “Defining the Inputs and Outputs” on page 3-10, you specified
the data type as uint8 and the size as scalar (the default). (See “Guidelines
for Inheriting Data and Event Properties” in the online Stateflow User’s
Guide documentation.)

Tip You can specify data types and sizes as expressions in which you call
functions that return property values of other variables already defined in
Stateflow, MATLAB, or Simulink. Such functions include size, type, and
fixdt. For more information, see “Entering Expressions and Parameters for
Data Properties” in the online Stateflow User’s Guide documentation.

8-3

8 Simulating the Chart

Setting Simulation Parameters
To set simulation parameters, follow these steps:

1 Open the model Stage5Trigger and save it as Stage6Simulate in the
same directory.

2 Double-click Air Controller to open the Stateflow chart.

3 Check the settings for simulation time, as follows:

a In the Stateflow Editor, select Configuration Parameters from the
Simulation menu.

The Configuration Parameters dialog box opens on your desktop:

8-4

Setting Simulation Parameters

b Click Solver in the left Select pane if it not already selected.

Under Simulation time on the right, note that the start and stop times
have been preset for you. You can adjust these times later as you become
more familiar with the run-time behavior of the Stateflow chart.

c Keep the preset values for now and click OK to close the dialog box.

4 Leave the Stateflow chart open for the next exercise.

8-5

8 Simulating the Chart

Animating Stateflow Charts
When you simulate a Simulink model, you can animate Stateflow charts to
highlight states and transitions as they execute. Animation provides visual
verification that your chart behaves as expected. Animation is enabled by
default, but you need to set the speed. To configure animation for your
simulation session, follow these steps:

1 Make sure animation has been enabled for your chart, as follows:

a In the Stateflow Editor, select Open Simulation Target from the Tools
menu.

The Stateflow Target Builder dialog box opens on your desktop.

8-6

Animating Stateflow Charts

Note This dialog box is used to configure Stateflow for building targets.
A target is a program that executes a Stateflow chart or a Simulink
model that contains a Stateflow chart. Stateflow builds a simulation
target (sfun) that lets you simulate your Stateflow application in
Simulink. For more information, see “Building Targets” in the online
Stateflow User’s Guide documentation.

b Click the Coder Options button in the middle of the dialog box.

The Stateflow sfun Coder Options dialog box opens on your desktop:

Note that Enable debugging/animation is checked.

c Close both dialog boxes.

2 Set the speed of animation, as follows:

a From the Stateflow Editor, open the Stateflow debugger by selecting
Debug from the Tools menu or clicking the Debug icon:

8-7

8 Simulating the Chart

The Stateflow debugger opens on your desktop:

By default, animation is enabled at 0.6-second delay.

b Change the delay to 1 second so the animation will proceed at the
slowest speed.

Note You can change the speed of animation at any time during
simulation

3 Leave the Air Controller chart and the debugger open for the next exercise.

8-8

Setting Breakpoints

Setting Breakpoints
In this exercise, you will learn how to set breakpoints in the debugger to pause
simulation during key run-time activities so you can observe the behavior of
your chart in slow motion. You can set the following breakpoints:

Breakpoint Description

Chart Entry Simulation halts when the Stateflow chart wakes
up.

Event Broadcast Simulation halts when an event, such as SWITCH or
CLOCK, occurs.

State Entry Simulation halts when a state becomes active.

You will also learn how to examine data values when simulation pauses.

Follow these steps:

1 In the debugger, select Chart Entry and State Entry as breakpoints.

Note If you also set breakpoints at each event broadcast, simulation would
pause at every rising or falling edge of the SWITCH and CLOCK signals. To
keep simulation running at a reasonable pace, leave Event Broadcast
unchecked.

8-9

8 Simulating the Chart

2 Notice the Browse Data option in the menu bar just above the output
display pane of the debugger:

-���	���	�&������!	����
(���	�� �������	"�����

��	�	&���$"����

Note The Browse Data option appears grayed out, but becomes active
when simulation pauses at a breakpoint. You will use this option in
“Simulating the Air Controller Chart” on page 8-11.

3 Leave the debugger open for the next exercise.

8-10

Simulating the Air Controller Chart

Simulating the Air Controller Chart
In this exercise, you will simulate the Air Controller chart. If this is the first
time you are simulating the chart in the Stage6Simulate model, Stateflow
builds the simulation target by performing the following actions before
simulation actually starts:

• Parses the chart for state inconsistency errors, like those mentioned in
“Preparing Charts for Simulation” on page 8-3.

• Generates C code that represents the behavior of the chart

• Builds the generated code into an executable program for the simulation
target, called an sfun target

• Creates a directory called sfprj in the directory where the chart resides to
store the generated files that make up the sfun target

• Creates a MEX (MATLAB executable) file that corresponds to the C source
file

The MATLAB command line displays status messages during each of these
processes. You should see the following messages in your MATLAB Command
Window, indicating a successful build:

For more information, see “Building Targets” in the Stateflow User’s Guide.

During simulation, you will change breakpoints and observe data values
when execution pauses. Follow these steps:

1 In Stage6Simulate, open the Scope block. Position the Scope block, Air
Controller chart, and debugger so all are visible on your desktop.

2 In the debugger, start simulation by clicking the Start button.

8-11

8 Simulating the Chart

After Stateflow finishes building the simulation target, the Stateflow chart
appears with a gray background, indicating that simulation has begun.
Simulation continues until it reaches the first breakpoint, when the Air
Controller chart wakes up. Notice that the status panel at the top of the
debugger provides a snapshot of simulation activities at the breakpoint.

Detail What It Means What You See at First
Breakpoint

Stopped What executed at the
breakpoint

Entry: Chart Air Controller

Executing Stateflow chart that is
executing

Air Controller

Current
Event

Event that is processed at
this time step

Input event SWITCH

Simulink
Time

Time at which the
simulation paused

0.000000

Note also that the Browse Data option is now enabled.

3 Click the down arrow to the right of the Browse Data option and select
Watched Data (Current Chart) from the submenu.

By selecting this option, you will be able to examine the values of the
input temp and output airflow. Recall that you configured these objects
as data to be watched in the debugger in the exercise “Defining the Inputs
and Outputs” on page 3-10.

8-12

Simulating the Air Controller Chart

Tip You can also view data values from the MATLAB command line at
simulation breakpoints. Here’s how to do it:

a When simulation pauses at a breakpoint, click in the MATLAB command
line and press the Enter key.

MATLAB displays a debug>> prompt.

b At the prompt, type the name of the data object.

MATLAB displays the value of the data object.

4 Scroll down in the output display pane of the debugger to view the values
of temp and airflow.

Note that temp = 70 (below the threshold for turning on FAN1) and airflow
= 0 (indicating that no fans are running).

5 Resume simulation by clicking the Continue button.

8-13

8 Simulating the Chart

Simulation continues until the next breakpoint, activation of the PowerOff
state, which appears highlighted in the Stateflow chart (as part of
animation):

The default transition activates PowerOff after the chart wakes up.

6 Uncheck the breakpoint Chart Entry and continue simulation.

8-14

Simulating the Air Controller Chart

Simulation continues to the next breakpoint, the activation of the PowerOn
state:

8-15

8 Simulating the Chart

Note in the output display pane of the debugger that temp has risen to over
157 degrees. The Scope displays the temperature pattern:

7 Continue simulation through the following breakpoints, noting chart
animation, Scope display, and how data values change:

Breakpoint Value of temp
(Degrees)

Value of
airflow

Activation of FAN1 > 157 0

Default transition to
FAN1.Off

> 157 0

Activation of FAN2 > 157 0

8-16

Simulating the Air Controller Chart

Breakpoint Value of temp
(Degrees)

Value of
airflow

Default transition to
FAN2.Off

> 157 0

Activation of SpeedValue > 157 0

Transition to FAN1.On
(because temp >= 120 degrees)

> 157 0

Transition to FAN2.On
(because temp >= 150 degrees)

> 157 0

Transition to FAN2.Off
(because temp < 150 degrees)

> 149 and < 150 2

Transition to FAN1.Off
(because temp < 120 degrees)

> 119 and < 120 1

Transition to FAN1.On
(because temp >= 120 degrees)

> 120 0

Transition to FAN1.Off
(because temp < 120 degrees)

> 119 and < 120 1

8 To speed through the rest of the simulation, uncheck all breakpoints,
change animation delay to 0, and click Continue.

Notice that FAN1 continues to cycle on and off as temp fluctuates between
119 and 120 degrees until power cycles off at 500 seconds. After power
cycles off, the fans stop running and temp begins to rise unchecked until
simulation reaches stop time at 600 seconds.

8-17

8 Simulating the Chart

The Scope captures this activity:

Note This display should look the same as the Scope after running the
prebuilt model in “Running the Model” on page 2-11.

9 Save Stage6Simulate, and close all other windows and dialogs.

Where to go next. Now you are ready to begin phase 7 of the workflow:
Chapter 9, “Debugging the Chart”.

8-18

9

Debugging the Chart

�
������	���	������
���	 ������!	��
�
 ���	��	�"�������

#
������	���
�������
�
��	�� ����$

'
������	���
�����������

&��(���	������

)
��
���	��(��
���!!��	���	
����

*
��&�!
���	
����

+
�� �����
���	
����

%
������

�����	�
�����
���	�����&���

You have entered phase 7 of a basic workflow for building a Stateflow chart:
debugging the chart. In Chapter 8, “Simulating the Chart”, you learned how to
use the debugger for setting breakpoints and observing data. In this chapter,
you will learn how Stateflow detects errors and provides diagnostic assistance.

Debugging State Inconsistencies
(p. 9-2)

Shows you how to debug a state
inconsistency error

Debugging Data Range Violations
(p. 9-6)

Shows you how to debug errors
caused by data values going out of
range

9 Debugging the Chart

Debugging State Inconsistencies
In this exercise, you will introduce a state inconsistency error in your
Stateflow chart and troubleshoot the problem. Follow these steps:

1 Open the model Stage6Simulate and save it as Stage7Debug in the same
directory.

2 Double-click Air Controller to open the Stateflow chart.

3 Delete the default transition to FAN2.Off by selecting it and pressing the
Delete key.

Removing the default transition will cause a state inconsistency error.
(Recall from “Preparing Charts for Simulation” on page 8-3 that there must
be a default transition at every level of the Stateflow hierarchy that has
exclusive [OR] decomposition.)

9-2

Debugging State Inconsistencies

Your Stateflow chart should look like this:

4 Open the Stateflow debugger and make sure State Inconsistency is
enabled in the Error checking options panel.

5 Save the chart, and then build it by clicking the Build icon:

9-3

9 Debugging the Chart

Stateflow generates a coder warning highlighted with a gray bullet. The
warning indicates that a state (identified by number) has no unconditional
path to a substate and that the source of the problem is FAN2:

Note The state number in your dialog display may differ from the one
pictured above.

6 Locate the offending state in the Air Controller chart, either by
double-clicking the coder warning text or clicking the link to the state
number in the status panel at the bottom of the dialog box.

9-4

Debugging State Inconsistencies

Stateflow highlights FAN2 in the chart:

7 Add back the default transition to FAN2.Off.

The default transition provides the unconditional path to one of the
substates of FAN2.

8 Build the chart again.

This time the chart builds successfully without parser or code generation
errors.

9 Save Stage7Debug, and leave Air Controller open for the next exercise.

9-5

9 Debugging the Chart

Debugging Data Range Violations
In this exercise, you will introduce a data range violation in your Stateflow
chart and use the debugger to troubleshoot the problem. Follow these steps:

1 In the Air Controller chart, modify the during action in the SpeedValue
state by adding 1 to the computed value, as follows:

during: airflow = in(FAN1.On) + in(FAN2.On) + 1;

Recall that in “Defining the Inputs and Outputs” on page 3-10, you set
a limit range of 0 to 2 for airflow. By adding 1 to the computation, the
value of airflow will exceed the upper limit of this range when two fans
are running.

2 Open the Stateflow debugger and make the following changes:

• Make sure Data Range is enabled under Error checking options.

• Uncheck all breakpoints.

3 Save and build the chart.

The chart should build with no errors or warnings.

4 Start simulation.

9-6

Debugging Data Range Violations

Simulation pauses after 350 seconds because Stateflow generates a
run-time error, described in the debugger:

As expected, the error occurs in the during action of SpeedValue because
the value of airflow is out of range.

5 To isolate the problem, double-click the last line in the status panel at
the bottom of the dialog box:

Data #40 (0:0:0): airflow

The Model Explorer opens on your desktop, allowing you to view the
properties of airflow in the right, read-only pane (read-only because
simulation is running).

9-7

9 Debugging the Chart

6 Click the Value Attributes tab and check the limit range for airflow:

7 Back in the debugger, check the value of airflow by clicking Browse
Data > Watched Data (Current Chart).

airflow = 3

This value exceeds the upper limit of 2.

8 Stop simulation.

The data range error in Stateflow causes a block error to be generated
by Simulink when the model tries to use airflow as an index into its
multiport switch. At 3, the value of airflow exceeds the number of inputs
defined for the switch and, therefore, the index is also out of range.

9 Restore the during action to its previous code, and then save and rebuild
the model.

The model should rebuild with no errors or warnings.

9-8

Debugging Data Range Violations

Where to go next. You have completed a basic workflow for building a
Stateflow chart, but there is more to learn. To gain further experience with
Stateflow, explore these resources:

• Stateflow documentation — The MathWorks provides extensive
documentation on how to work with Stateflow using the graphical user
interface and the API. To access Stateflow documentation, follow these
steps:

a In the MATLAB window, select Help from the Start menu.

b In the Help Navigator, select the Contents pane and scroll down to the
Stateflow node.

c Select the Stateflow node and follow the links to documentation
resources, including real-world example models.

• Stateflow demos — Stateflow provides a collection of demonstration
models, which you can access as follows:

a In the MATLAB window, select Demos from the Start menu.

The Help browser opens, displaying information on how to get started
using demos.

b In the Help Navigator, expand the Simulink node to expose the Stateflow
node.

c Expand the Stateflow node to examine demonstration models that
illustrate a variety of applications.

• Stateflow training — The MathWorks offers classes in Stateflow,
MATLAB, and Simulink. To see a list of available Stateflow courses, visit
the MathWorks Web site: www.mathworks.com/services/training.

9-9

http://www.mathworks.com/services/training/

9 Debugging the Chart

9-10

Index

IndexA
animation

of Stateflow charts 8-6

C
code generation

Stateflow and 1-3
compiler

for target 1-10
conditions 2-5

for guarding transitions 6-11

D
debugging

data range violations 9-6
setting breakpoints 8-9
state inconsistencies 9-2

decomposition
of states 4-6
setting 4-11

default transitions 2-4 6-3
adding to Stateflow charts 6-8

defining interface between Stateflow and
Simulink
design considerations 3-2

during actions 5-6

E
edge-triggered events 7-3

connecting to input signals 7-4
entry actions 5-5
event-driven systems

modeling in Stateflow 1-2
events 2-5

for guarding transitions 6-13
exclusive (OR) states 2-3
execution order

of parallel (AND) states 4-14

F
finite-state machines

modeling in Stateflow 1-2

G
guarding transitions 6-3

I
installation

product dependencies for Stateflow 1-10
required software for Stateflow 1-9
Stateflow 1-9

introduction to Stateflow 1-1

L
laptop computer with Stateflow 1-10
license

for Stateflow 1-9

M
models

running 2-11

P
parallel (AND) states 2-3 4-10

explicit ordering of 4-14

R
related products

for Stateflow 1-11
running models 2-11

Index-1

Index

S
simulation

preparing Stateflow charts for 8-3
setting parameters in Stateflow 8-4
Stateflow 8-1

state actions 2-4
design considerations 5-2
types 5-4
when to use 5-2

state transitions 2-4
adding to Stateflow charts 6-5
default 6-3
design considerations 6-2
guarding 6-3

state variables
defining 5-2
design considerations 5-2

Stateflow
about 1-1
animation 8-6
code generation 1-3
conditions 2-5
default transitions 2-4
description 1-2
events 2-5
exclusive (OR) states 2-3
installing 1-9
obtaining a license 1-9
parallel (AND) states 2-3
preparing for simulation 8-3
prerequisite software 1-9

product dependencies 1-10
related products 1-11
setting breakpoints in 8-9
setting simulation parameters 8-4
simulation 8-1
state actions 2-4
state transitions 2-4
using on laptop computer 1-10
workflow for building charts 1-8
working with Simulink 1-6

Stateflow block
adding to Simulink model 3-4

states
decomposition 4-6
hierarchy 4-5
parallel (AND) 4-10
when to use 4-2

T
target compiler

setting up 1-10
transitions 2-4

adding to Stateflow charts 6-5
default 6-3
design considerations 6-2
guarding 6-3

triggering Stateflow charts
design considerations 7-2

triggers 7-2
how to implement 7-3

Index-2

	toc
	Introduction to Stateflow
	What Is Stateflow?
	Extends the Capabilities of Traditional State Charts
	Generates C Code

	What Does a Stateflow Chart Look Like?
	How Stateflow Works with Simulink
	Basic Workflow for Building a Stateflow Chart
	Installing Stateflow
	Obtaining a Stateflow License
	Prerequisite Software
	Product Dependencies
	Setting Up Your Own Target Compiler
	Using Stateflow on a Laptop Computer

	Related Products

	The Stateflow Chart You Will Build
	The Stateflow Chart
	Exclusive (OR) state . State that represents mutually exclusive
	Parallel (AND) state . State that represents independent modes o
	Transition . Graphical object that links one state to another an
	Default transition . Graphical object that specifies which exclu
	State action . Action executed based on the status of a state.
	Condition . Boolean expression that allows a transition to occur
	Event . Object that can trigger a variety of activities, includi
	How the Stateflow Chart Works with the Simulink Model
	A Look at the Physical Plant
	Running the Model
	Where to go next . Now you are ready to start building the State

	Defining the Interface to Simulink
	Design Considerations for Defining the Interface
	Inputs Required from Simulink
	Type of Input . Temperature of the physical plant
	Rationale . The Stateflow chart is designed to control the air t
	Properties of Input . The properties of the temperature input ar
	Outputs Required from Stateflow
	Type of Output . Speed of airflow, based on how many fans are op
	Rationale . When the Simulink subsystem determines the temperatu
	Properties of Output . The properties of the airflow output are

	Implementing the Interface
	Adding a Stateflow Block to a Simulink Model
	Defining the Inputs and Outputs
	Connecting the Stateflow Block to the Simulink Subsystem
	Where to go next . Now you are ready to begin phase 2 of the wor

	Defining the States for Modeling Each Mode of Operation
	Design Considerations for Defining the States
	When to Use States
	Determining the States to Define
	Analysis of Operating Modes
	Number of States to Define

	Determining the Hierarchy of States
	Determining the Decomposition of States

	Implementing the States
	Adding the Power On and Power Off States
	Adding and Configuring Parallel States
	Setting Parallel Decomposition
	Adding the Fan States
	Adding the SpeedValue State
	Setting Explicit Ordering of Parallel States

	Adding the On and Off States for the Fans
	Where to go next . Now you are ready to begin phase 3 of the wor

	Defining State Actions and Variables
	Design Considerations for Defining State Actions and Variables
	Defining State Variables
	Determining Whether to Use State Actions
	Determining the Type of State Action to Use

	Implementing State Actions
	Writing an Entry Action
	Writing a During Action
	Where to go next . Now you are ready to begin phase 4 of the wor

	Defining Transitions Between States
	Design Considerations for Defining Transitions Between States
	Determining How and When to Transition Between Operating Modes
	Placing Default Transitions
	Guarding the Transitions

	Adding the Transitions
	Drawing the Transitions Between States
	Adding Default Transitions
	Adding Conditions to Guard Transitions
	Adding Events to Guard Transitions
	Where to go next . Now you are ready to begin phase 5 of the wor

	Triggering a Stateflow Chart
	Design Considerations for Triggering Stateflow Charts
	Implementing the Triggers
	Defining the CLOCK Event
	Connecting the Edge-Triggered Events to the Input Signals
	Where to go next . Now you are ready to begin phase 6 of the wor

	Simulating the Chart
	Preparing Charts for Simulation
	Setting Simulation Parameters
	Animating Stateflow Charts
	Setting Breakpoints
	Simulating the Air Controller Chart
	Where to go next . Now you are ready to begin phase 7 of the wor

	Debugging the Chart
	Debugging State Inconsistencies
	Debugging Data Range Violations
	Where to go next . You have completed a basic workflow for build

	Index

